These record-breaking tube worms can survive for centuries

Some deep-sea tube worms get long in the tooth … er, tube. Living several decades longer than its shallow-water relatives, Escarpia laminata has the longest known life span for a tube worm, aging beyond 300 years, researchers report in the August Science of Nature.

E. laminata lives 1,000 to 3,300 meters deep in the Gulf of Mexico, near seafloor vents that seep energy-rich compounds that feed bacteria that feed the tube worms. In 2006, biologists marked 356 E. laminata in their natural habitat and measured how much the creatures had grown a year later. To estimate the ages of tube worms of different sizes, the researchers plugged E. laminata’s average yearly growth rate — along with estimates of birthrates and death rates, based on observations of another 1,046 tube worms — into a simulation. The species’s typical life span is 100 to 200 years, the researchers calculate, but some larger tube worms may be more than 300 years old.

With few large predators, deep-sea tube worms have got it good, says study coauthor Alanna Durkin, a biologist at Temple University in Philadelphia. “Once they find a seat at the buffet, they’re pretty set for hundreds of years.” The researchers’ methodology appears robust, says ocean scientist David Reynolds of Cardiff University in Wales, who was not involved in the work. Although variable environmental conditions could affect growth rate over time, he says.

Giant larvaceans could be ferrying ocean plastic to the seafloor

Everybody poops, but the poop of bloblike filter feeders called giant larvaceans could be laced with microplastics.

Every day, these gelatinous creatures (Bathochordaeus stygius) build giant disposable mucus mansions to round up zooplankton into their stomachs — sometimes sifting through around 80 liters of seawater per hour. Kakani Katija and her colleagues at the Monterey Bay Aquarium Research Institute now suggest that tiny plastic particles also make their way in — and out — of giant larvaceans’ guts.

Microplastics pervade the ocean. Their combined mass could reach 250 million metric tons by 2025. Scientists don’t know a lot about where microplastics stick around in open water ecosystems.

To see if plastics could end up on the larvacean menu, Katija and colleagues tried feeding the animals brightly colored microplastics. An underwater robot equipped with camera gear helped the researchers monitor plastic intake from above. Some animals did end up scarfing down the particles, and some of those particles ended up in the organism’s waste, which showers down on the seafloor, Katija and colleagues report August 16 in Science Advances.

“Plastics are sometimes seen as a sea surface issue, and more and more we’re seeing that’s not necessarily true,” Katija says.

Just how much plastic ends up passing through giant larvaceans in the wild remains unclear. But the researchers suspect that the creatures’ poop, as well as their mucus houses, could transfer microplastics from the water’s surface to the depths of the sea (along with nutrients such as carbon that cycle through the environment). And that pollution transfer may impact the ecosystems at either end.

Turning up the heat on electrons reveals an elusive physics phenomenon

When things heat up, spinning electrons go their separate ways.

Warming one end of a strip of platinum shuttles electrons around according to their spin, a quantum property that makes them behave as if they are twirling around. Known as the spin Nernst effect, the newly detected phenomenon was the only one in a cadre of related spin effects that hadn’t previously been spotted, researchers report online September 11 in Nature Materials.

“The last missing piece in the puzzle was spin Nernst and that’s why we set out to search for this,” says study coauthor Sebastian Goennenwein, a physicist at the Technical University of Dresden in Germany.
The effect and its brethren — with names like the spin Hall effect, the spin Seebeck effect and the spin Peltier effect — allow scientists to create flows of electron spins, or spin currents. Such research could lead to smaller and more efficient electronic gadgets that use electrons’ spins to store and transmit information instead of electric charge, a technique known as “spintronics.”

In the spin Nernst effect, named after Nobel laureate chemist Walther Nernst, heating one end of a metal causes electrons to flow toward the other end, bouncing around inside the material as they go. Within certain materials, that bouncing has a preferred direction: Electrons with spins pointing up (as if twirling counterclockwise) go to the right and electrons with spins pointing down (as if twirling clockwise) go to the left, creating an overall spin current. Although the effect had been predicted, no one had yet observed it.

Finding evidence of the effect required disentangling it from other heat- and charge-related effects that occur in materials. To do so, the researchers coupled the platinum to a layer of a magnetic insulator, a material known as yttrium iron garnet. Then, they altered the direction of the insulator’s magnetization, which changed whether the spin current could flow through the insulator. That change slightly altered a voltage measured along the strip of platinum. The scientists measured how this voltage changed with the direction of the magnetization to isolate the fingerprints of the spin Nernst effect.

“The measurement was a tour de force; the measurement was ridiculously hard,” says physicist Joseph Heremans of Ohio State University in Columbus, who was not involved with the research. The effect could help scientists to better understand materials that may be useful for building spintronic devices, he says. “It’s really a new set of eyes on the physics of what’s going on inside these devices.”

A relative of the spin Nernst effect called the spin Hall effect is much studied for its potential use in spintronic devices. In the spin Hall effect, an electric field pushes electrons through a material, and the particles veer off to the left and right depending on their spin. The spin Nernst effect relies on the same basic physics, but uses heat instead of an electric field to get the particles moving.
“It’s a beautiful experiment. It shows very nicely the spin Nernst effect,” says physicist Greg Fuchs of Cornell University. “It beautifully unifies our understanding of the interrelation between charge, heat and spin transport.”

The rise of agricultural states came at a big cost, a new book argues

Contrary to popular opinion, humans didn’t shed a harsh existence as hunter-gatherers and herders for the good life of stay-in-place farming. Year-round farming villages and early agricultural states, such as those that cropped up in Mesopotamia, exchanged mobile groups’ healthy lifestyles for the back-breaking drudgery of cultivating crops, exposure to infectious diseases, inadequate diets, taxes and conscription into armies.

In Against the Grain, political anthropologist James C. Scott offers a disturbing but enlightening defense of that position. He draws on past and recent archaeological studies indicating that the emergence of state-run societies around 6,000 years ago represented a cultural step backward in some important ways. Scott has previously written about modern states’ failed social engineering projects and the evasion of state control by present-day mountain peoples in Southeast Asia. Exploring the roots of state-building was a logical next step.
Neither agriculture nor large settlements, on their own, stimulated state formation, Scott argues. Middle Eastern foragers cultivated grains thousands of years before year-round villages appeared. Large, permanent settlements depending substantially on wild plants and marine food materialized in Mesopotamia well before agricultural states formed there.

Scott proposes that early states represented a shotgun marriage of farming and huge communities presided over by a new class of hyperambitious rulers. State-building began in wetland areas, such as the Fertile Crescent, with huge expanses of fertile soil. There, grain farming squeezed enough people and storable food into a small enough space to enable state control and tax collection.

Fledgling states were fragile, often breaking into smaller entities or falling apart entirely. Researchers have tended to overlook the possibility that apparent state “collapses” in the archaeological record involved intentional flights of subjects fed up with war, taxes, epidemics and crop failures, Scott says.

He ends with a look at how herding groups both raided and abetted early agricultural states in Asia. Nomads deftly robbed stores of food and goods from their neighbors, then negotiated steep bribes in exchange for not attacking. Mobile pastoralists eventually became trading partners, bringing sedentary societies copper, horses and slaves, to name a few. Herders were also mercenaries, catching runaway slaves and repressing revolts. Ironically, Scott writes, “barbarians” helped states become the dominant political players they are today.

Scott writes in a straightforward style largely free of scientific jargon. He doesn’t portray foraging and mobile lifestyles as utopian systems, but a closer look at their cons as well as their pros would have painted a fuller picture of these people. Still, Scott’s depiction of early centralized states’ problems rings true in a modern world of nation-states.

The key to breaking down plastic may be in caterpillars’ guts

MINNEAPOLIS — To destroy plastic, caterpillars go with their gut bacteria.

Caterpillars that nibble through polyethylene plastic cultivate a diverse community of digestive bacteria that process the plastic, researchers reported November 13 at the annual meeting of the Society of Environmental Toxicology and Chemistry North America. Dousing old plastic in a similar mix of bacteria might speed the breakdown of the persistent pollutant.

Polyethylene is widely used to make plastic bags and other packaging materials, but it hangs around in landfills for decades, perhaps even centuries. Recently, scientists identified several species of caterpillars that appear to eat and digest the plastic, breaking it down. But dumping old shopping bags into a den of caterpillars isn’t really a practical large-scale strategy for getting rid of the plastic. So to figure out the insects’ secret, researchers fed polyethylene to the larvae of pantry moths, Plodia interpunctella, and then looked at the bacteria in the caterpillars’ guts.
Caterpillars that ate a control diet of bran and wheat had guts mostly dominated by Turicibacter, a group of bacteria commonly found in animals’ digestive tracts. But the caterpillars that munched on the plastic had a much more diverse native microbial community. In particular, they had high levels of a few types of bacteria: Tepidimonas, Pseudomonas, Rhizobiales and Methylobacteriaceae.

Some of these bacteria have been shown to colonize and help degrade plastics in the ocean, says study coauthor Anisha Navlekar of Texas Tech University in Lubbock, so it makes sense that the microorganisms also appear to be helping the caterpillars break down plastics.

This artificial cartilage gets its strength from the stuff in bulletproof vests

A new kind of artificial cartilage, made with the same kind of fiber that fortifies bulletproof vests, is proving stronger than others.

The fabricated material mimics the stiffness, toughness and water content of natural cartilage, researchers report in the Jan. 4 Advanced Materials. This synthetic tissue could replace the cartilage in a person’s body that naturally wears down and heals poorly (SN: 8/11/12, p. 22), alleviating joint pain and potentially sparing many people from having to undergo joint replacement surgery.
Scientists have been trying to fashion artificial cartilage for decades, says Kara Spiller, a biomedical engineer at Drexel University in Philadelphia not involved in the work. But earlier materials were either weaker than the real thing or didn’t pack enough water to transport nutrients to surrounding cells.

The new material is a polymer mixture called a hydrogel that’s mostly water and contains nanoversions of the aramid fibers used to make bulletproof vests. Nicholas Kotov, a chemist at the University of Michigan in Ann Arbor, and his colleagues tested how well their material held its shape when squeezed or stretched, and how easily it was broken. Both versions of the hydrogel — one, about 70 percent water; the other, about 92 percent water — either matched or exceeded the stiffness and toughness of real cartilage.

Story continues after image
The new material has “a lot of different possibilities,” Spiller says. “The biggest market is going to be osteoarthritis patients, because most patients with osteoarthritis have no damage to the bone, just damage to the cartilage.” Many of the 30 million adults in the United States who suffer from osteoarthritis undergo whole knee or hip replacements. If doctors could simply replace worn down cartilage with this material, that could lower the risk of surgical complication. “That would be really huge,” Spiller says.
This kind of hydrogel “could also be used for all sorts of sports injuries, where you have damaged tendons or ligaments, [or] even for back pain,” she adds.

It remains to be seen how well this material can integrate into a person’s body, says Benjamin Wiley, a chemist at Duke University not involved in the work. Researchers still need to make sure it can anchor to bone and doesn’t irritate surrounding tissue.

What bees did during the Great American Eclipse

When the 2017 Great American Eclipse hit totality and the sky went dark, bees noticed.

Microphones in flower patches at 11 sites in the path of the eclipse picked up the buzzing sounds of bees flying among blooms before and after totality. But those sounds were noticeably absent during the full solar blackout, a new study finds.

Dimming light and some summer cooling during the onset of the eclipse didn’t appear to make a difference to the bees. But the deeper darkness of totality did, researchers report October 10 in the Annals of the Entomological Society of America. At the time of totality, the change in buzzing was abrupt, says study coauthor and ecologist Candace Galen of the University of Missouri in Columbia.
The recordings come from citizen scientists, mostly school classes, setting out small microphones at two spots in Oregon, one in Idaho and eight in Missouri. Often when bees went silent at the peak of the eclipse, Galen says, “you can hear the people in the background going ‘ooo,’ ‘ahh’ or clapping.”
There’s no entirely reliable way (yet) of telling what kinds of bees were doing the buzzing, based only on their sounds, Galen says. She estimates that the Missouri sites had a lot of bumblebees, while the western sites had more of the tinier, temperature-fussy Megachile bees.
More western samples, with the fussier bees, might have let researchers see an effect on the insects of temperatures dropping by at least 10 degrees Celsius during the eclipse. The temperature plunge in the Missouri summer just “made things feel a little more comfortable,” Galen says.

This study of buzz recordings gives the first formal data published on bees during a solar eclipse, as far as Galen knows. “Insects are remarkably neglected,” she says. “Everybody wants to know what their dog and cat are doing during the eclipse, but they don’t think about the flea.”

If the past is a guide, Hubble’s new trouble won’t doom the space telescope

Hubble’s in trouble again.

The 28-year-old space telescope, in orbit around the Earth, put itself to sleep on October 5 because of an undiagnosed problem with one of its steering wheels. But once more, astronomers are optimistic about Hubble’s chances of recovery. After all, it’s just the latest nail-biting moment in the history of a telescope that has defied all life-expectancy predictions.

There is one major difference this time. Hubble was designed to be repaired by astronauts on the space shuttle. Each time the telescope broke previously, a shuttle mission fixed it. “That we can’t do anymore, because there ain’t no shuttle,” says astronomer Helmut Jenkner of the Space Telescope Science Institute in Baltimore, who is Hubble’s deputy mission head.
The most recent problem started when one of the three gyroscopes that control where the telescope points failed. That wasn’t surprising, says Hubble senior project scientist Jennifer Wiseman of NASA’s Goddard Space Flight Center in Greenbelt, Md. That particular gyroscope had been glitching for about a year. But when the team turned on a backup gyroscope, it didn’t function properly either.

Astronomers are working to figure out what went wrong and how to fix it from the ground. The mood is upbeat, Wiseman says. But even if the gyroscope doesn’t come back online, there are ways to point Hubble and continue observing with as few as one gyroscope.

“This is not a catastrophic failure, but it is a sign of mortality,” says astronomer Robert Kirshner of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. Like cataracts, he says, it’s “a sign of aging, but there’s a very good remedy.”
While we wait for news of how Hubble is faring, here’s a look back at some of its previous hiccups and repair missions.

1990: The blurry mirror
On June 27, 1990, three months after the space telescope launched, astronomers discovered an aberration in Hubble’s primary mirror. Its curvature was off by two micrometers, making the images slightly blurry.

The telescope soldiered on, despite being the butt of jokes on late-night TV. It observed a supernova that exploded in 1987 (SN: 2/18/17, p. 20), measured the distance to a satellite galaxy of the Milky Way and took its first look at Jupiter before the space shuttle Endeavour arrived to fix the mirror in December 1993.
1999: The first gyroscope crisis
On November 13, 1999, Hubble was put into safe mode after the fourth of its six gyroscopes failed, leaving it without the three working gyros necessary to point precisely.
An already planned preventative maintenance shuttle mission suddenly became more urgent. NASA split the mission into two parts to get to the telescope more quickly. The first part became a rescue mission: Astronauts flew the space shuttle Discovery to Hubble that December to install all new gyroscopes and a new computer.

2004: Final shuttle mission canceled
After the space shuttle Columbia disintegrated while re-entering Earth’s atmosphere in 2003, NASA canceled the planned fifth and final Hubble reservicing mission. “That could really have been the beginning of the end,” Jenkner says.

The team has known for more than a decade that someday Hubble will have to work with fewer than three gyroscopes. To prepare, Hubble’s operations team deliberately shut down one of the telescope’s gyroscopes in 2005, to observe with only two.

“We’ve been thinking about this possibility for many years,” Wiseman says. “This time will come at some point in Hubble’s mission, either now or later.”

Shutting down the third gyroscope was expected to extend Hubble’s life by only eight months, until mid-2008. In the meantime, two of the telescope’s scientific instruments — the Space Telescope Imaging Spectrograph and the Advanced Camera for Surveys — stopped working due to power supply failures.
2009: New lease on life
Fortunately, NASA restored the final servicing mission, and the space shuttle Atlantis visited Hubble in May 2009 (SN Online: 5/11/09). That mission restored Hubble’s cameras, installed new ones and crucially, left the space telescope with six new gyroscopes, three for immediate use and three backups. The three gyroscopes still in operation (including the backup that is currently malfunctioning) are of a newer type, and are expected to live five times as long as the older ones, which last four to six years.

The team expects Hubble to continue doing science well into the 2020s and to have years of overlap with its successor, the James Webb Space Telescope, due to launch in 2021. “We are always worried,” says Jenkner, who has been working on Hubble since 1983. “At the same time, we are confident that we will be running for quite some time more.”

People who have a good sense of smell are also good navigators

We may truly be led by our noses. A sense of smell and a sense of navigation are linked in our brains, scientists propose.

Neuroscientist Louisa Dahmani and colleagues asked 57 young people to navigate through a virtual town on a computer screen before being tested on how well they could get from one spot to another. The same young people’s smelling abilities were also scrutinized. After a sniff of one of 40 odor-infused felt-tip pens, participants were shown four words on a screen and asked to choose the one that matched the smell. On these two seemingly different tasks, the superior smellers and the superior navigators turned out to be one and the same, the team found.

Scientists linked both skills to certain spots in the brain: The left orbitofrontal cortex and the right hippocampus were both bigger in the better smellers and better navigators. While the orbitofrontal cortex has been tied to smelling, the hippocampus is known to be involved in both smelling and navigation. A separate group of nine people who had damaged orbitofrontal cortices had more trouble with navigation and smell identification, the researchers report October 16 in Nature Communications. Dahmani, who’s now at Harvard University, did the work while she was at McGill University in Montreal.

A sense of smell may have evolved to help people find their way around, an idea called the olfactory spatial hypothesis. More specific aspects of smell, such as how good people are at detecting faint whiffs, could also be tied to navigation, the researchers suggest.

Malaysia is ground zero for the next malaria menace

Vinita Surukan knew the mosquitoes were trouble. They attacked her in swarms, biting through her clothes as she worked to collect rubber tree sap near her village in Sabah, the northern state of Malaysia. The 30-year-old woman described the situation as nearly unbearable. But she needed the job.

There were few alternatives in her village surrounded by fragments of forest reserves and larger swaths of farms, oil palm plantations and rubber tree estates. So she endured until a week of high fever and vomiting forced her to stop.
The night of July 23, Surukan was trying to sleep off her fever when the clinic she visited earlier in the day called with results: Her blood was teeming with malaria parasites, about a million in each drop. Her family rushed her to the town hospital where she received intravenous antimalarial drugs before being transferred to a city hospital equipped to treat severe malaria. The drugs cleared most of the parasites, and the lucky woman was smiling by morning.

Malaria has terrorized humans for millennia, its fevers carved into our earliest writing on ancient Sumerian clay tablets from Mesopotamia. In 2016, four species of human malaria parasites, which are spread by mosquito from person to person, infected more than 210 million people worldwide, killing almost 450,000. The deadliest species, Plasmodium falciparum, causes most of the infections.

But Surukan’s malaria was different. Hers was not a human malaria parasite. She had P. knowlesi, which infects several monkey species. The same parasite had recently infected two other people in Surukan’s village — a man who hunts in the forest and a teenager. Surukan suspects that her parasites came from the monkeys that live in the forest bordering the rubber tree estate where she worked. Some villagers quit working there after hearing of Surukan’s illness.

Monkey malaria, discovered in the early 1900s, became a public health concern only in the last 15 years. Before that, scientists thought it was extremely rare for monkey malaria parasites, of which there are at least 30 species, to infect humans.
Yet since 2008, Malaysia has reported more than 15,000 cases of P. knowlesi infection and about 50 deaths. Infections in 2017 alone hit 3,600.
People infected with monkey malaria are found across Southeast Asia near forests with wild monkeys. In 2017, another species of monkey malaria parasite, P. cynomolgi, was found in five Malaysians and 13 Cambodians. And by 2018, at least 19 travelers to the region, mostly Europeans, had brought monkey malaria back to their home countries.

The rise of monkey malaria in Malaysia is closely tied to rapid deforestation, says Kimberly Fornace, an epidemiologist at the London School of Hygiene and Tropical Medicine. After testing blood samples of nearly 2,000 people from areas in Sabah with various levels of deforestation, she found that people staying or working near cut forests were more likely than people living away from forests to have P. knowlesi infections, she and colleagues reported in June in PLOS Neglected Tropical Diseases. Stepping over felled trees, humans move closer to the monkeys and the parasite-carrying mosquitoes that thrive in cleared forests.
It’s out there
There’s no feasible way to treat wild monkeys for an infection that they show no signs of. “That’s the problem with P. knowlesi,” says Singapore-based infectious disease specialist Fe Espino, a director of the Asia Pacific Malaria Elimination Network.

In 2015, the World Health Organization set a goal for 2030: to stop malaria transmission in at least 35 of the 91 malaria-endemic countries. WHO targets the four human malaria parasites: P. falciparum, P. vivax, P. malariae and P. ovale. Monkey malaria is excluded from the campaign because the agency regards it as an animal disease that has not been shown to transmit among humans.

But as countries reduce human malaria, they will eventually have to deal with monkey malaria, Espino says, echoing an opinion widely shared by monkey malaria scientists.

“Something nasty” could emerge from the pool of malaria parasites in monkeys, says malariologist Richard Culleton of Nagasaki University in Japan. Culleton studies the genetics of human and monkey malaria. Malaria parasites can mutate quickly — possibly into new types that can more easily infect humans (SN: 9/6/14, p. 9). To Culleton, the monkey malaria reservoir “is like a black box. Things come flying out of it occasionally and you don’t know what’s coming next.”
Malaysia is very close to reaching the WHO target of human malaria elimination. In 2017, only 85 people there were infected with human malaria. But that success feels hollow as monkey malaria gains a foothold. And while monkey malaria has swelled into a public health threat only in Malaysia, the same could happen in other parts of Southeast Asia and beyond. Even in southeastern Brazil, where human malaria was eliminated 50 years ago, the P. simium malaria parasite that resides in howler monkeys caused outbreaks in humans in 2015 and 2016.

From tool to threat
In the late 1800s, scientists discovered the Plasmodium parasite and its Anopheles mosquito carriers. Humans retaliated by draining marshes to stop mosquito breeding and spraying insecticides over whole communities. Governments and militaries pursued antimalarial drugs as the disease claimed countless soldiers during the two World Wars.

Scientists soon found malaria parasites in birds, rodents, apes and monkeys. To the researchers, the parasites found in monkeys were a tool for testing antimalarial drugs, not a threat. An accident, however, showed otherwise.
In 1960, biologist Don Eyles had been studying the monkey malaria P. cynomolgi at a National Institutes of Health lab in Memphis, Tenn., when he fell ill with malarial fevers. He had been infected with the parasites found in his research monkeys. His team quickly confirmed that the malaria parasites in his monkeys could be carried by mosquitoes to humans. Suddenly, monkey malaria was not just a tool; it was an animal disease that could naturally infect humans.
The news shook WHO, McWilson Warren said in a 2005 interview recorded by the Office of NIH History. Warren, a parasitologist, had been Eyles’ colleague. Five years before Eyles became infected, WHO had launched the Global Malaria Eradication Programme. Banking on insecticides and antimalarial drugs, the agency had aimed to end all malaria transmissions outside of Africa. A monkey malaria that easily infects humans would sink the program because there would be no way to treat all the monkeys.

A team of American scientists, including Eyles and Warren, traveled to Malaysia — then the Federation of Malaya — where the P. cynomolgi parasites that infected Eyles came from. Funded by NIH, the scientists worked with colleagues from the Institute of Medical Research in Kuala Lumpur, established in 1900 by the British to study tropical diseases.

From 1961 to 1965, the researchers discovered five new species of monkey malaria parasites and about two dozen mosquito species that carry the parasites. But the researchers did not find any human infections. Then, in 1965, an American surveyor became infected with P. knowlesi after spending several nights camping on a hill about 160 kilometers inland from Kuala Lumpur.

Warren surveyed the forested area where the infected American had camped. The hill sat beside a meandering river. Monkeys and gibbons, a type of ape, lived on the hill and in adjacent forests. The closest house was about two kilometers away. Warren sampled the blood of four monkeys and more than 1,100 villagers around the hill; he collected mosquitoes too.

He found P. knowlesi parasites in the monkeys, but none among the villagers. Only one mosquito species, A. maculatus, appeared capable of transmitting malaria between monkeys and humans, but Warren deemed its numbers too low to matter. He concluded that monkey malaria stayed in the forests and rarely ever spilled into humans.

With those results, NIH ended the monkey malaria project, Warren said, and the Institute of Medical Research in Kuala Lumpur returned to its primary focus: human malaria, dengue and other mosquito-borne diseases. Monkey malaria was struck off the list of public health concerns.

Wake-up call
P. knowlesi landed back in the spotlight in 2004, with a report in the Lancet by malariologist Balbir Singh and his team. The group had found 120 people infected over two years in southern Malaysian Borneo. The patients were mostly indigenous people who lived near forests. Clinicians initially had checked the patients’ blood samples under microscopes — the standard test — and diagnosed the parasites as human malaria. But when Singh, of Universiti Malaysia Sarawak, applied molecular tools that identify parasite species by their DNA, he revealed that all the samples were P. knowlesi. Monkey malaria was breaking out of the diminishing forests.

By 2018, P. knowlesi had infected humans in all Southeast Asian countries except for East Timor. Singapore, declared malaria free in 1982, reported that six soldiers were infected with P. knowlesi from wild monkeys in a forest reserve. The parasite also turned up in almost 380 out of 3,700 visitors to health clinics in North Sumatra, Indonesia, an area that is close to being deemed free of human malaria.
Many scientists now recognize P. knowlesi as the fifth malaria parasite species that can naturally infect humans. It is also the only one to multiply in the blood every 24 hours, and it can kill if treatment is delayed. People pick up P. knowlesi parasites from long-tailed macaques, pig-tailed macaques and Mitred leaf monkeys. These monkeys range across Southeast Asia. So far, malaria parasites have been found in monkeys near or in forests, but rarely in monkeys in towns or cities.

Scientists propose several reasons for the recent rise in monkey malaria infections, but two stand out: improvement in malaria detection and forest loss.

Malaysia, for instance, finds more monkey malaria cases than other Southeast Asian countries because it added molecular diagnostic tools in 2009. Other countries use only microscopy for detection, says Rose Nani Mudin, who heads the vectorborne disease sector at Malaysia’s Ministry of Health. Since 2008, annual monkey malaria cases in Malaysia have climbed tenfold, even as human malaria cases have plummeted. “Maybe there is a genuine increase in [monkey malaria] cases. But with strengthening of surveillance, of course you would detect more cases,” she says.

Data collected by Malaysia’s malaria surveillance system have also revealed strong links between infection risk and deforestation. Fornace, the epidemiologist, examined the underlying drivers of monkey malaria in Surukan’s home state of Sabah. Fornace mapped monkey malaria cases in 405 villages, based on patient records from 2008 to 2012. Satellite data showed changes in forested areas around those villages. The villages most likely to report monkey malaria infections were those that had cut more than 8 percent of their surrounding forests within the last five years, she and colleagues reported in 2016 in Emerging Infectious Diseases.
Fornace’s team went into the field for a follow-up study, published in June in PLOS Neglected Tropical Diseases. The team collected blood samples from almost 2,000 people in two areas in Sabah and checked for current and past malaria infection. People who farmed or worked in plantations near forests had at least a 63 percent higher risk of P. knowlesi infection, and — like in the 2016 study — forests and cleared areas escalated risk of infection.

“It feels almost like P. knowlesi follows deforestation,” Fornace says. Several years after a forest is cut back, nearby communities “get a peak of P. knowlesi.”

Today, the hill where the American surveyor camped in 1965 is a small island in a sea of oil palm estates. From 2000 to 2012, Malaysia cleared a total amount of forest equaling 14.4 percent of its land area, more than any other country, according to a study published in 2013 in Science. A study in 2013 in PLOS ONE used satellite images to show that in 2009, only one-fifth of Malaysian Borneo was intact forest. Almost one-fourth of all forest there had been logged, regrown and logged many times over.

Since 2008, oil palm acreage in Malaysian Borneo has increased from 2.08 million hectares to 3.1 million, according to the Malaysian Palm Oil Board. In Malaysia, the four states hit hardest by deforestation — Sabah, Sarawak, Kelantan and Pahang — report 95 percent of the country’s P. knowlesi cases.
Fornace thinks deforestation and the ecological changes that come with it are the main drivers of monkey malaria’s rise in Malaysia. She has seen long-tailed macaques spend more time in farms and near houses after their home forests were being logged. Macaques thrive near human communities where food is abundant and predators stay out. Parasite-carrying mosquitoes breed in puddles made by farming and logging vehicles.

Where monkeys go, mosquitoes follow. Indra Vythilingam, a parasitologist at University of Malaya in Kuala Lumpur, studied human malaria in indigenous communities in the early 1990s. Back then, she rarely found A. cracens, the mosquito species that carries monkey malaria in Peninsular Malaysia. But in 2007, that species made up over 60 percent of mosquitoes collected at forest edges and in orchards, she reported in 2012 in Malaria Journal. “It’s so much easier to find them” now, she says.

As Fornace points out, “P. knowlesi is a really good example of how a disease can emerge and change” as land use changes. She recommends that when big projects are evaluated for their impact on the economy and the environment, human health should be considered as well.

What to expect
While P. knowlesi cases are climbing in Malaysia, scientists have found no evidence that P. knowlesi transmits directly from human to mosquito to human (though many suspect it happens, albeit inefficiently).
Following a review by experts in 2017, WHO continues to exclude P. knowlesi from its malaria elimination efforts. Rabindra Abeyasinghe, a tropical medicine specialist who coordinates WHO malaria control in the western Pacific region, says the agency will reconsider P. knowlesi as human malaria if there is new evidence to show that the parasite transmits within human communities.

In Malaysia last year, only one person died from human malaria, but P. knowlesi killed 11. “We don’t want that to happen, which is why [P. knowlesi] is our priority even though it is not in the elimination program,” says Rose Nani Mudin from the country’s Ministry of Health.

Unable to do much with the monkeys in the trees, Malaysian health officers focus on the people most likely to be infected with P. knowlesi. Programs raise awareness of monkey malaria and aim to reduce mosquitoes around houses. New mosquito-control methods are needed, however, because conventional methods like insecticide-treated bed nets do not work for monkey malaria mosquitoes that bite outdoors around dusk.

Fighting malaria is like playing chess against an opponent that counters every good move we make, says Culleton in Japan. Malaria parasites can mutate quickly and “go away and hide in places and come out again.” Against malaria, he says, “we can never let our guard down.”

This article appears in the November 10, 2018 Science News with the headline, “The Next Malaria Menace: Deforestation brings monkeys and humans close enough to share an age-old disease.”

Editor’s note: This story was updated on November 6, 2018 to correct the WHO’s position on monkey malaria. The agency excludes monkey malaria parasites from its malaria eradication goals, not because those particular parasites rarely infect humans, but because the parasites have not been shown to transmit among humans.